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Abstract 

The solutions of Einsteins’s equations in a constant energy-momentum tensor field are Ricci 
curvature homogeneous. Convenient perturbations of a Lorentz solvmanifold yield such curvature 
homogeneous metrics, prescribing redshift of light and singularities. 
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1. Introduction 

Ever since Einstein discovered the usefulness of Lorentz geometry in the study of grav- 
itation, the main tool on to describing how mass “curves” the geometry of the ambient 
space-time (M, g), and how curvature “moves” matter subject to free fall [ 10,161, has been 
the famous equation 

Ric - $Sg = 8nT. (1.1) 

Whenever one wishes to find a geometric model for some particular problem in gravitation, 
one has to solve Eq. (1.1) for g. Usually the stress-energy tensor T is measured w.r.t. some 
local orthoframe field 0 (rods and clocks). 

Assume for simplicity that the components of T relative to 0 are constant. Such space- 
times were already considered in modem cosmology [2]; this is a very likely model for 
space-time regions which are away from significant gravitational sources, and will be of 
real interest in remote travels. 

Viewed as an equation of sections in 2; M, (1.1) reads 

Ric - iSId = SnT, (1.2) 
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where T E P(X!M), has constant components w.r.t. 0 @ O*, and in particular Tr T is 
constant. Then, by taking the trace of (1.2), the scalar curvature S is constant on M, and the 
components of the Ricci curvature Ric are constant as well. 

Definition 1.1. A pseudo-Riemannian manifold, whose Ricci curvature tensor field has 
constant components w.r.t. some orthoframe field is said to be Ricci curvature homogeneous 
(R.c.h.). 

It is obvious that homogeneous spaces such as Godel’s Universe are R.c.h.‘s. A large class 
of R.c.h.‘s are the curvature homogeneous manifolds (c.h.), which are defined similarly, 
where the Ricci tensor is replaced by the curvature tensor. In dimension 3, there is no 
distinction between c.h. and R.c.h. manifolds; they and their homogeneous models have 
been recently studied in [3,7,13,18]. 

In dimension 4 and above, another interesting class of R.c.h.‘s are the Einstein manifolds 
(Em.); these are models for a physical vacuum or in other terms, manifolds for which there 
exists a function f such that Ric = fg [ 16, p. 961. 

Since the property of being a R.c.h. is closed under product, it turns out that there are 
examples of R.c.h.‘s, falling in one and only one or none of the classes c.h.‘s or E.m.‘s. 

However, given that in dimension 3, there are no E.m.‘s of nonconstant curvature, in 
dimension 4, it is more difficult to produce examples of R.c.h.‘s which are neither E.m.‘s 
nor c.h.‘s. 

In this paper we restrict our attention to some c.h. models only, obtained by a perturbation 
starting from a Lorentz solvmanifold. The idea of perturbing a “nice” metric to obtain 
solutions of Einstein equations is not new [21,23], still it has never been used before in the 
covariant setup of [ 121. 

In general, unlike in the homogeneous case [ 171, the set of nonisometric metrics of given 
curvature tensor is quite large, depending on functions, and we will provide such an example 
in Section 3. 

A c.h. manifold (M, g) with the same curvature tensor as a homogeneous manifold (M, go) 
is said to have a homogeneous model. The model (M, go) is in general not unique, even if 
it is symmetric. 

We have the following local hierarchy: 

constant curvature R isotropic 

locally symmetric R autoparal lel 

locally homogeneous H locally self equivalent 

curvature homogeneous R punctually self equivalent 

Ricci curvature homogeneous Ric punctually self equivalent 

constant scalar curvature S constant 

arbitrary 

In the above chart R, (Ric, S) represent the Riemannian (Ricci, scalar) curvature. 
A first class of nonhomogeneous Lorentz manifolds modeled on a symmetric space was 

exhibited in [4]. 
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In this paper, we give other examples in this direction. In order to obtain these new 
classes of spaces we proceed in two steps: first we will find some highly homogeneous 
models, using our g-triple technique [ 171. Secondly we deform some flat Lorentz solvman- 
ifolds to curvature homogeneous ones, and determine, in some cases, their homogeneous 
models. 

In spite of their rich geometric structure, from the physical point of view homogeneous 
Lorentz manifolds are “static” [20]. This is the main reason why R.c.h. space-times are 
more realistic models, since they predict redshifts of light-like geodesics and singularities 
suggested by experimental data. 

The paper is structured as follows. 
Section 2 is concerned with the list of conjugacy classes of Lie subalgebras of the Lorentz 

algebra ot(4), an ingredient required by the g-triple method in dimension 4. This list is 
important in itself, in special relativity, given that each Lie subgroup of the Lorentz group 
yields a conservation law. 

An application of this method to four-dimensional Lorentz homogeneous geometry is 
presented in Section 3. One shows that Lorentz four-dimensional homogeneous manifolds, 
whose isotropy algebra is at least two-dimensional, have a symmetric model. 

In Section 4, we will deform some flat invariant Lorentz metrics to curvature homoge- 
neous metrics. For some of them we will specify the homogeneous model. Then we will 
show that for a suitable class of curvature homogeneous manifolds, the light-like particles 
have cosmological redshifts, or singularities and thus are not static. 

2. Constant electromagnetic fields, semispinors and subalgebras of o l(4) 

To start with, we will determine the highest-dimensional subalgebras of the Lorentz 
algebra. Let 11 11: be the “square of the norm” in the n-dimensional Minkowski vector space 
‘WT. An isotopic hyperplane is a tangent hyperplane to the null CO~US {x E W, ]lx]]: = 

01. 
Let h(n) be the highest dimension of a proper subalgebra of the Lorentz algebra 01 (n). 
AS a vector space, et(n) has the basis (fiJ)tii<jsn, 

fi” = E( - 16ij Ej, (2.1) 

where (t6ij) is a diagonal matrix, and all the nonzero entries are 1, except for that from the 

right lower comer, which is - 1, and E/ is the usual basis of gl(n) [ 11, Vol. 1, p. 1181. 

Proposition2.1. For any n E N, 5 # n > 2, h(n) = i(n - l)(n - 2) + 1. Any h(n)- 
dimensional Lie subalgebra of o 1 (n) is conjugated to the Lie algebra of the group of Lorentz 
transformations of the plane, that leave invariant an isotropic plane. 

Proo$ Let (x~)~=G be orthogonal coordinates in the Minkowski space, and let m(n), 
o(n - l), o(n - 2)‘be the Lie algebras of the subgroups of 01 (n), that leave invariant the 
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isotropic hyperplane x”-’ - x” = 0, the hyperplane x” = 0, and the subspace ,Y”~’ = 
x” = 0, respectively. Then m(n) = o(n - 2) @ R,f,:_,@ Span(S,“-’ + ,f;“, j = 1, n - 2). 

Let m be a subalgebra of 01 (n) such that dim 111 ) i (n - l)(n - 2) + 1, and let n = 
111 n o(n - 1). Since o(n - 1) is a maximal subalgebra of o(n), n is a proper subalgebra of 
o(n - l), and dimn 5 dim o(n - 2) = i(n - 2)(n - 3). 

Moreover, since the natural map o(n - 1)/n + 01 (n)/ln, given by x mod n + x mod 111, 
is one to one. it follows that 

dim nr 5 dim 01 (?I) - dim o(n - 1) + dimn 5 i(n - l)(n - 2) + 1. 

Then dim 111 = i (n - l)(n - 2) + 1 and dim n = $ (n - 2)(n - 3), but a classical result 
[14] shows that if II # 5 and dim n = dim ~l(n - 2), then n is conjugated to o(n - 2) in 
o(n - 1). Therefore, one may assume that, up to a conjugacy, In = o(n - 2) @ p, where v 
is a subspace of the orthocomplement b of o(n - 2) in 01 (n) w.r.t. the Killing form. 

So in = o(n - 2) @ p is reductive decomposition and dim p = n - 1. 
For each j 5 n - 1, let bj = Rfl’-’ $ R,fj”. Then b = @‘I{ r)j. 

Assume II > 4. For i # j 5 n - 2, ad fi maps bi isomorphically onto bj, and leaves p 
invariant; as such, all these subspaces pnbj are isomorphic. Moreover, they are of dimension 
1 or less, since otherwise dim p > 2(n - 1) > n - 1. Suppose X E 1, has the decomposition 
X = XI + . . + X,-I as an element of the direct sum b = @Ti; bj. We claim that all the 
components Xi are in p. 

Indeed ad2f/(X) = -Xi - Xi, and therefore X1 + .. f + X,,_2 and X,,_l are in p. 
If rz = 4, [t is in u and by a straightforward computation one may prove that X1 and 
X2 are as well as in p. If II > 4 and i, j, k < II - 1 are distinct indices, then 2X: = 

(ad2f;k - ad2f/ - ad2,fi)(X) so that all the components X; are in p. It follows that p = 

@yr: (p n hj), and for any j, p n r)j is one-dimensional, in particular f,:_, E p. 

LetO#fj=~,jf:I-‘+~jf:E~~~~~.Since[,f,~_,,fi]E~~~nPanddimpnI~,~=l,it 

follows that U; = bj. 

Suppose there is a subscript j such that aj = b,j; then f,r’-’ + fj” E I)j n p, and for any 

kf j,kin-2,[fkj,~~-‘+fJn]=f;-‘+fkn. is a basis of bk n p; thus nl is conjugated 
to nt(n). 

Suppose there is some j such that aj + bj = 0. In this case III is conjugated to n_(n) = 
o(n) @ Rf,:_,CE Span(hY-’ - ff, j = 1. n - 2), thus conjugated to in(n) as well. 

Assume n = 3. m is a plane in u (3); III = [< E o(3), A<: + B$ + Cc: = 0). At 
least two of the coefficients A, B, C are nonzero. Notice that A # 0. Therefore, either 
B = 0 and 111 = Span(fT + f:, ff), or one may pick up a basis of nr of the form. 
(Xl(b) = ff + bff, X2(b) = &Kff + bf;); the subalgebras Span(fF + f;, f:), 
Span(X1 (b), X2(b)) are conjugated to nr (3). 0 

Now we specialize in 01 (4) (see also [6, p. 391). 
In view of Proposition 2.1, h (4) = 4 and any four-dimensional Lie subalgebra of o I (4) is 

conjugated to m(4). As far as the other proper subalgebras are concerned, in this dimension 
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there are special techniques which allow us to find the conjugacy classes of all Lie subal- 
gebras of 01(4). One of these is the fact that an element of o,(4) may be identified with a 
constant electromagnetic field. One associates with the electromagnetic field F = (E, H) = 
(E’ei, Hjej) theelement f = E’ff + E2$ + E’f:+ H’f; + H2fi + H3ff. 

It is elementary [8] that a constant nonzero electromagnetic field may be reduced by 
means of a Lorentz transformation to one and only one of the following forms: 

fE.H = H.f: + E.f;. fo = (f: + f;). (2.2) 

We shall say that these are canonical elements of o l(4). 

Corollary 2.1. A one-dimensional subalgebra of o](4) is conjugated to one and only one 
of the subalgebras o(2), u1(2), Rfo, [W,fl.H, H > 0. 

Remark 2.1. More generally, let (X) be the conjugacy class of the subalgebra RX of 01 (n). 
Then if [x] is the largest integer smaller than x, the following holds true. 

If n 2 4, ro = [in] - 2, r+ = [;(,I - l)] - 1, r- = [in] - 1, then, for each nonzero 
X E 01 (?I), there are unique e E (0. +. -), a E [0, co]“’ such that (X) = (X,(a)), where 

X0(a) = 1  4 I alf2+...+a,,,f22~~_,+f~~~+f~~i +f,;+'. I1 15. 

fi + f3 9 n = 4, 

X+!a)=al,fl?+...+a,-+~~r~_, + f,r:i, 

x-(a)=alff +.~.+ar~f~~~_l + f,"_l. 

Another simplification comes from the existence of an action by conjugacy of Sl(2, @) 
on the space of 2 x 2 self-adjoint matrices of determinant 1, which yields a double covering 
morphism @ of the component of the identity 01(4)0 by Sl(2, C). The induced Lie algebra 
isomorphism is the inverse of the i-spin representation [8, p. 4471 or [15, p. 441. Let 
$ = dl@-’ : 01(4) + 51(2, C)‘. Then 

$(fF) = -ii(E,] - Ez), $(fi') = ;w: --q), 

+(f;) = ;(E: +E:), $(f:) = -ii(Ei + E:). (2.3) 

$(f;) = -ii(Ei - Ef), $(f;) = ;(E; -E;). 

Two subalgebras of o](4) are conjugated iff their @-images are conjugated in ~l(2, C)” 
under the adjoint action of SL(4, C) (or even of GL(2, C)). We have to find the conjugacy 
classes of two- and three-dimensional real subalgebras of ~((2. C)‘. But conjugated sub- 
algebras are isomorphic, and two- and three-dimensional Lie algebras are classified since 
Bianchi. Therefore one may realize the abstract Lie algebras as subalgebras of 61(2, C)‘. 

Lemma 2.1. (1). A two-dimensional real Lie algebra is commutative or affine (has a basis 
(Xl, X2) such that either [Xl, X2] = 0, or [Xl, X2] = Xl). 
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(2) A three-dimensional Lie algebra has a basis X = (Xl, X2, X3), with respect to which, 
its structure equations have one and only one of the following forms (in each case, we write 
down only the nonzero brackets): 

(0) commutative, 

(1) [X2, x31 = Xl, 

@.a) [XI, x21 = -ax27 [XI, X31 = (a - 2)X3, a ? 1, 
(2.b) [XI, X21 = -X2 + bX3, [Xl, X3] = -X3 - bX2, b > 0, 

(2.0) [Xl, x21 = -x3, 1x11 x31 = FX2, 

(2) 1x1, x21 = -x2 + x3, [Xl, x31 = -x3> 

(3.+) [Xl, x21 = x3, [Xl > x31 = --x2, [X2, x31 = Xl, 
(3.-I [Xl, x21 = -x3, [Xl, x31 = -x2, [X2, x31 = Xl. 

In view of Lemma 2.1, one has to find the subalgebras of ;1(2, C)’ of a given type, and 
among them to distinguish those that are conjugated. Moreover, w.l.o.g., one may assume 
that X1 as a $-image of a canonical element. +(2f~,~) = (E - Hi)(E: - Ez) = Yz, and 
$(fo) is conjugated to i(E; - Ei + ff) = Yo. 

2.1. Two-dimensional Lie subalgebras 

Suppose f~ is commutative, then X2 = aXt, a E @\R. If Xt = Y,, then dt$(l)) is 
conjugated to o(2) Cl9 ot(2) = Rff @ [wft. If X1 = Yu, then d]@(b) is conjugated 
to rW(ff + f:) @ rW(ff + f;‘), which we denote by ~2. a:! is not conjugated to o(2) CB 

01m. 
Suppose f~ is affine. Since the commutator of a diagonal matrix with another matrix has 

a zero diagonal, the possibility X1 = YZ is excluded. 
If Xt = Yo, then X2 has the form X2 = i(l - 2c)(Ei - Et) - off + Ef. 

If 2c = 1 - a + ib, it follows that 4 is the Lie subalgebra I), given by 

ba = {(au - iu)(E! - Ei + ff) + u(Ei + Ef), u, u E R). 

A direct computation shows that if 

g = 212 + (a’ - a)(Ef - E; + f;), 

then ad g(M = f~,/, which proves that all two-dimensional affine subalgebras are conju- 
gated. A representative of this conjugacy class in ot(4) is m(3) = rW(f; + f.) @ [wf$. 

Proposition 2.2. Any two-dimensional Lie subalgebra of ot(4) is conjugated with one and 
only one of the following Lie subalgebras; ~2, o(2) @ ot(2), m(3). 

2.2. Three-dimensional Lie subalgebras 

Yu cannot be the first element of a canonical basis like in Lemma (2.1) (2). Also, there 
are no Lie subalgebras of the type (0) or (1). 
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The only subalgebras of ~((2, C)’ of type (2.a) with Xt = Y, are R(Ei - Ei) $ IWE: @ 
IRE: and R(Ef - El) @ RE: @ IRE:, which are conjugated to each other. The first one 
is the q-image of rW(fF + $) @ rW(f; + ft) @ [wfi and we will denote this subalgebra 

by ~3.0. 
For each b > 0, the subalgebras of type (2.b) are conjugated. R’(ff + ff) @ lR(f; + 

f;) @ rW(ft - bf,?-) is an element of this conjugacy class (in ot(4)). 
Now we are looking for subalgebras 1) of Gl(2, C)” of type (2.0). Thus b = Span(Xt , X2, 

X3)9 

[Xl, x31 = FX2, [Xl, x21 = -x3, [X2, x31 = 0. (2.4) 

Without loss of generality, we may assume that Xt = z(E~ - Ez), z E C*, Xj = 
Uj(E_E)+bjE+cjE,j=2,3. 

If in the first equation in (2.4) we select “-“, it turns out that Xl, X2, X3 are linearly 
dependent. 

If in the first equation of (2.4) we select “+“, a direct computation shows that 1) = 1): = 
{it(E: - El) + zEf, t E R, z E Cl), or h = hi = (it(Ei - Ez) + zEi, t E R, z E C}. 

Both these algebras lie in the same conjugacy class of the $-image of n3.r = rW(f: + 

fp) @ R(f; + f;) @ Rf:. 
The conjugacy classes of Lie subalgebras of types (2.a) (2.b), and (2.0) may be thus 

parameterized by the closed interval I = [0, 11; for each t E I, let us put 

As hyperplane of m(4), 03,~ are maximal Lie subalgebras. There are no Lie subalgebras 
of type (2). Any Lie subalgebra of type (3.+) is the Lie subalgebra of a maximal compact 
connected Lie subgroup of Or (4), being thus conjugated to SO(3) [22]. 

The noncompact simple subalgebras (type (3.-)), with Xt = YZ, have the form h, = 
(t(El - Ez) + w(cE: - c-‘Ed), t E R, w E C} with c > 0. If u2 = c’c and g = 
uE: - a-‘Ei, and then adg(b,) = f),(. 

We proved: 

Proposition 2.3. Any three-dimensional Lie subalgebra of or(4) is conjugated with one 
and only one of the subalgebras o(3), ot(3), or a3 ,tr t E I. Any maximal Lie subalgebra of 
ot(4) is conjugated with a Lie subalgebra of a Lie subgroup of O,(4), leaving invariant a 
hyperplane of the four-dimensional Minkowski space. 

3. Four-dimensional homogeneous Lorentz spaces with nontrivial isotropy via 
g-triples 

The problem of listing four-dimensional locally homogeneous Lorentz manifolds amounts 
to the following algorithm [ 171: 
(a) List the conjugacy classes of Lie subalgebras of the Lorentz algebra er(4). 
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(b) Given the complement p of the subalgebra g of 01(4), find the ad g-invariant linear maps 
r : R4 + p and the bilinear map D : R4 x R4 + (1 whose associated AS - “torsion” 
and “curvature”. T : R4 x R4 + R4, h : R4 x R4 + g defined by: 

T(X, Y) = T(Y)X - r(X)Y, 

C(X, Y) = fi(X, Y) - [T(X), r(Y)]!, 

satisfy to: 

(3.1) 

(3.2) 

I<, fi(X, Ul - ~Gv, y> - fax CY> 
+ [E-, r(Wl,, rV)l, + K=> r(TW, Ul, 
+ [r(x)> 14, r(y)lgl, = 0 
v< E g, vx, VY E R4, 

c &T(X, Y), Z) - I&X, Y), r(z)l<, = 0 
Cl 

vx. VY, vz E R4, 

c (fi(X, Y)(Z) - T(T(X, Y), Z) = 0 
CYCI 

vx, VY, vz E R4. 

The ad cl-invariance of r means 

(3.3) 

(3.4) 

(3.5) 

r(<x) = [I$. T(X)], v< E n, VX E lw4. (3.6) 

A, and A, stand for the components of A w.r.t. the decomposition o](4) = :I$ p. Once the 
g-triple (p, r, a) is determined, one can associate with it a locally homogeneous Lorentz 
manifold, called the geometric realization of the n-triple (p, r, fin), whose Lie algebra of 
Killing vector fields is isomorphic to 1~ = R $ R4, [ , I), where 

[<t VI = [<t VI? 69 rl E 33 
E> Xl = <(XI + 16, rm1gt < E $I> x E R4? (3.7) 

[X, Y] = -T(X, Y) - d(X, Y), X, Y E R4. 

The curvature tensor of the geometric realization G’ = fi @ p~ : R4 x R4 + o,(4), and 
has the p-component 

pQ = [T(X), r(Y)l~ + r(T(X, Y)). (3.8) 

Note that the Ricciform is the bilinear symmetric form p : R4 x R4, acting on an orthoframe 

e, by 

P(ei, ej) = Tr(x + 62(x, ei)ej). (3.9) 

We apply the two steps algorithm shown above in order to recover from this perspective 
six-dimensional transitive Killling algebras on four-dimensional Lorentz manifolds, which 
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is part of the list of “gravitational fields” exhibited in [ 191. Besides, using formulas (3.8), 
it will follow that any such gravitational field is modeled on a symmetric space. At the end 
of the section we shall give few remarks concerning this list [ 191. 

We shall look for cl-triples, where n is a subalgebra of 01(4), and dim 0 > 2. We have 
seen in Section 1 that the list of representatives of conjugacy classes of d-dimensional Lie 
subalgebras of o](4) is: 
_ m(4) ford = 4, 
_ o(3), ol(3) and nj,t, t E [0, 11, ford = 3, 
_ 0((2)) $ o1(2), m(2) and 02 ford = 2. 

Thus, in the sequel, we take 0 to be one of the above Lie subalgebras of o,(4). We indicate 
the results without giving all the details (the reader may either refind the results by himself, 
or look at classification done with other methods (e.g. [ 191). What would not be standard 
for the method (that was already exemplified in [ 171) will be explained. 

We also mention without proof that if n is one of these subalgebras, any n-triple is closed 
(see [ 17]), or in other words is associated to a homogeneous Lorentz space. 

m(4)-triples. The geometric realization of such a triple is locally flat. 
o(3)-triples. For the geometric realization M, of such a triple, we have the alternatives: 

(a) M has constant positive curvature (locally de-Sitter space), 
(b) M is locally the product of a Euclidean line and a Lorentz manifold of constant 

curvature. 
o_,(3)-triples. For the geometric realization M of such a triple, we have the alternatives: 

(a) M has constant negative curvature (locally anti-de-Sitter space-time), 
(b) M is locally the product of a Riemannian manifold of constantcurvature with a 

Minkowski line. 
n,,t-triples, f E [0, 11. The geometric realization is locally flat. 
n3.1 -triples. In order to identify the geometric realization of such a triple, we refer to the 

paper of a Cahen and Wallach [5]. We remind that a Lorentz manifold is indecomposable if, 
for any point x E M, the holonomy group @, fixes only nontrivial isotropic substances of 
7”M. It is known [4] that any simply connected indecomposable symmetric space is either 
a space of constant curvature, or admits a solvable transitive Killing algebra, and there is 
some h E SP3, h = (hi)j=m such that M = (W - gh), with 

n-2 n-2 

gh(X, dx) = x(dr’)* - dxnP’ dxn + C hi(Xi)2(dXnP’)2. 
i=l i=l 

(3.10) 

We will say that M is a (+)-space if all the components of k are equal and positive, and a 
(-)-space if these components are equal and negative. 

Proposition 3.1. If the geometric realization of an ox.1 -triple is not flat, then it is isometric 
to a (+)-space or to a (-)-space. 

ProoJ Let P = Span(fp, ft, f$.;‘, b e a complement of n3, l in ol(4). From (2.3)-(2.6), we 
get the following n3,1 -triple (11, r, a) form: 
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r = 0, fi(el, e2) = 1;2(ej, e4) = 0, 
fi(el, a) = fi(el, e4> = a(.ff + ff), (3.11) 
fi(e2, e3) = fite2,e4) = a(.f; + I$). 

From (3.3)-(3.6), one obtains the structure equations of a solvable transitive Killing algebra, 
f, of a symmetric space: 

[el, e21 = [e3, e41 = 0, 
[el, es1 = [el, e41 = -aC.ff + .ff>, 
[e2, es1 = [e2, e41 = -a&3 + ,f;). 

Lff + .ff, ell = If,’ + .f:, e21 = -e3 + e4. 

Lf,’ + .ff, e21 = If; + .f;, ell = 0, 

LfF + ff, es1 = Lff + .fp, e41 = el, 

1.t; + .f:. e31 = [f,” + .f;, e41 = e2, 

r.f; + .fp. f; + $1 = 0, 

Lf:9 ell = --e2, Lff,e21 = el, 

If:. e31 = L/f, e41 = 0, 

Lg. ff + &+I = -Cfi’ + fh 

u-f. f; + $1 = f: + fp. 

Let K be the simply connected Lie group of Lie algebra St, and let 

be the canonical form of K. 
Then (3.12) are equivalent to 

dB’+w;~8~+w:~(0~+0~)=0, 

do2 + 0’ A W; + W; A (~9~ + Q4) = 0, 

d04=-dde3=,1.,:+,2~,~, dw; = 0, 

dw:+w:r\w~-~~‘~(8”+8~)=0, 

dw; - W; A W; - (rQ2 A (H” + 84) = 0. 

K is solvable and thus diffeomorphic to R7, and (3.13) has the global solution: 

8’ + iQ2 = exp(ix)(du - udy), 

w: + iwi = exp(ix)(du + cz~ dy), 

0” +Q4 = dy,w; = dx, 0,x, Y> E R", (u,u) E c2, 

2Q4 = dt + (&I2 + 1~1~) dy - (V du + U dv). 

(3.12) 

(3.13) 

The Pfaff system 8’ = Q2 = 8” = e4 = 0 has the prime integrals u = x1 + ix2, y 1 x?, 
t = x4, and 11 8 11: is projectable to g = go given by (3.10), with h = (a, a). If a # 0, one 
makes a change to scale in x4 to get the form of g given in Proposition 3.1. 0 
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o(2) $ ol(2)triples. The geometric realization of such a triple is locally the product of 
two surfaces of constant curvature, one Riemannian and the other Lorentz. 

m(3)-triples. We have the following alternatives for the geometric realization M of such 
a triple: 
(a) M has constant nonpositive curvature, 
(b) M is locally the product of a Euclidean line and a Lorentz space of constant negative 

curvature. 
nz-triples. We shall prove the following result: 

Proposition 3.2. The geometric realization of any n2-triple is modeled by a symmetric 
space. There exists such Lorentz manifolds, that are not locally symmetric. 

ProojI All the computations are done for the Lie subalgebra fJ, conjugated to ~2: 4 = 
Span(ff - ff, f; - f;). If we look for (j-triples (p = Span(ff, ff, f:, f:), r, fi), after 
some computations, resulting from (3.3)-(3.6), one obtains: 

r(q) = r(e2) = 0, F(e3) = c.,ff + of, 

fi(el, e2) = fi(e3, e4) = 0, 

r(e4) = -cff - df:, 

(3.14) 

fi(e2, e3) = -fi(e2, e4) = B(fp - ff) + v(fj3 - f$. 

From (3.7), it follows that f = (1) @ R’, [ , 1) is a solvable Lie algebra. If we denote 
f; - ff = es, f; - fi = e(j, then the structure equations of f are (e3 stands for 23 = 

e3 + e4): 

[el, e21 = [elf es1 = [e2, e31 = 0, 
[cl, e41 = -ce2 + (Ye5 + Befj, 
[e2? e41 = ccl + Be5 + yes, 
[a, al = des, [e2, es1 = 0, 
[el, es1 = e3, [el, e61 = 0, 
[e2, e61 = e3, [e3,e51 = 0, 
[e3, e61 = 0, [e4,451 = e1 - des fceg, 
[e4, ed = e2 - ceg - de6, [es, e6l = 0. 

(3.15) 

Moreover from (3.19, it follows that if c = d = 0, then f = f~ @ [w3 is a reductive 
decomposition of a symmetric space ([iw3, rW3] C Q), that we shall name an c@v-space. 
Notice that an @y-space is generally indecomposable, cf. Remark 3.1 below. 

It is obvious (use (3.14) and uJ2 = 0) that for any values of the parameters CX!, ,I!?, y, c, d 
the geometric realization M of the Q-triple given by (3.14) is modeled on an @y-space. 

We claim that a OBO-space, /3 # 0, is an indecomposable symmetric space, that is not a 
Lie group with left invariant Lorentz metric (this is a consequence of Remark 3.1, but the 
reader may as well follow the argument given below that is independent of other reference). 
Assume the contrary; then, the Lie algebra f given by (3.15), with cx = y = c = d = 0 # fi, 
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has a Lie subalgebra $1 = Span(e; , e;, e; , e&), whereforeachi = 1, 4,ei = eifA;e5fB;e6. 
Since (1 is closed under [ , 1, and [e{, e;] = (A2 - Bi)es is in n, we have two possibilities: 
(1) ei = ej, and in this case the [ , ] closure condition implies that X2 + A = 0, where 

x= 

which fails since det A < 0. 
(2) ei # e3, and then A2 - B1 = 0. But [e;, ei] = A3e3 and [e;, e;] = B3e3. This imply 

A3 = B3 = 0, which is again impossible. 
Consider now the g-triple given by (3.14), with a = )/ = c = 0; we shall show that 

for ]d] large enough, f has a four-dimensional Lie subalgebra, transverse to (1. Indeed, let 
0 = Span(e; , e;, e3, eq), where as in the previous case ei = ei + Aie5 + Biee, i = 1, 2. 
Then, the condition [a, (11 C: n is equivalent to X2 + dX + A = 0, where X and A have the 
same meaning as in the previous case. If d = 2m, then 0 is a subalgebra off iff the equation 
(X + mZ2)” = -A + m2Z2 has a solution in Mz(R). This happens iff I/3 5 rn*. 0 

As a consequence of this computational analysis, we obtain: 

Theorem 3.1. Any Lorentz manifold of dimension 4, that admits a transitive Killing ulgebru 
of dimension 1 6, is modeled on a symmetric space. There are homogeneous Lorent,: 
manifolds modeled on symmetric spaces which are not symmetric. 

We close this section with the two observations: 

Remark 3.1. In order to see whether an c@y-space is indecomposable or not, we recall 
that for a reductive decomposition f = $1 @ R4, linear isotropy representation [ 11, Vol. 21 
of the holonomy algebra at a point is the Lie algebra generated by ([X, Y],,, X, Y E R”} 
[ 11, Vol. 2, p. 2061. In our case this Lie subalgebra of ot(4) may be one of the following: 

R(f;3 - fp + f; - ft), R(ff - ff), R(.f; - f$) or :I. 
Out of these four subalgebras of ot(4), (T leaves invariant only isotropic subspaces of 

the Minkowski vector space. But h,@, = R iff oly - p2 # 0. Consequently the only 
@y-spaces that are indecomposable are those with cry - p2 # 0. 

Remark 3.2. The aa-triples correspond to the family (33.53) on the list of gravitational 
fields presented in [ 191. This is the only nontrivial example of four-dimensional Lorentz 
algebra that admits a six-dimensional transitive Killing algebra. This follows from the upper 
list $1~triples. Notice that, unlike stated in [19], the Killing algebras (33.44), (33.45) are not 
transitive. 

If one wishes to find the metric of a geometric realization of an arbitrary nz-triple, one 
encounters in [ 191 a difficult problem of integration of system of differential equations 
(33.56). From our point of view, this problem is equivalent to the discussion of the nature 
of the characteristic roots of the matrix E E M& given below: 

E = -a& - B(E; + E.;) - y Ej + c(E; - E: + E; - E;) - d(E; + Et). 



V Putrungenuru/Journal qf Geometry und Physics 26 (1998) 227-246 239 

Although the characteristic equation has the elementary form uh4 + vh* + w = 0, where 
u, v, w are polynomials in LX, /I, y, c, d. A complete discussion of this equation has not yet 
been done. 

We also leave to the curious reader the task of listing homogeneous spaces with a five- 
dimensional transitive Killing algebra, an instructive application of the method of g-triples, 
which is too long to be presented here. 

4. Some examples of Ricci curvature homogeneous Lorentz manifolds 

We will exhibit nonhomogeneous examples of R.c.h.‘s along the following lines, which 
parallel a similar construction in Riemannian geometry [12]: Consider a one parameter 
(say x1) group of isometries $A-acting on the Minkowski space [WY, generated the matrix 
A E 01(3). Our Lie group M is generated by translations and by $A in the Poincare group 
of [wf. A point in [WY has the coordinates (x”. a = 2. 3,4); in these coordinates, the Cartan- 
Maurer form of M is @ = @‘EL, where 

8’ = dx’, e“ = dx” + A;xh dx’. (4.1) 

The structure equations of this group are 

de’ = 0, de’ = A”heb A e’ (4.2) 

@ can be also regarded as an orthocoframe for the left invariant flat metric ga =I1 g I]:. 
Let 0 E 6? ’ (M, rW4) be a perturbation of @ whose components are 

8’ = f(x”)@‘, 0” = go, (4.3) 

where f is a differentiable function on M, and let g denote the metric 11 0 II :; we differentiate 
(4.3) and based on (4.2) we get 

do’ = -$f-%‘t A 8”. dH” = -f-‘A$?’ A Bb. (4.4) 

Then a standard computation yields the following Levi-Civita connection forms w.r.t. 0: 

“i=-j--$ 3 af -loI cu;: = -f-‘A;& (4.5) 

and curvature forms 

The Ricci curvature of the perturbed metric w.r.t. 0 is 

(4.7) 
p11 = -c ,6&f-l, (axa)* 
Pab =-&f-I, mu = --g+l- 
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It follows that (M, g) is R.c.h. iff there is a symmetric matrix (hab) such that f is a solution 
for the linear system of p.d.e. s 

(4.8) 

If we differentiate (4.6) once more, from the structure equations we get the following 
identities: 

and by a variant of Cartan’s lemma (for Cartan’s lemma see [9]), it follows that there are 
constants pa, v, such that 

ha,,0 b I af = pa0 + I+-@. 
ax< 

If we evaluate (4.9) on the orthoframe dual to 8, we obtain the identity 

h ,=v af nc a axe ’ 

which proves that the matrix (Lab) has rank 1. The entries of this symmetric matrix have to 
have the form 

lab = cacb 

for some constant vector c = (c,). 
One may solve the system (4.8) whose general local solution is 

f(x) = &‘) exP(cbxb). 

We proved: 

(4.10) 

(4.11) 

Proposition 4.1. For any function f defined in (4.10), (M, g) is a R.c.h. Lorentz manifold. 
Moreover all these manifolds are c.h. 

A Lorentz manifold (M, g) (or a metric g) has a homogeneous model if there is a ho- 
mogeneous Lorentz manifold (H, g’) with same curvature tensor as M. For example if in 
(4.10) c has the form (0, a, a), then (M, g) defined in (4.11) has for homogeneous model 
the crOO-symmetric space, whose Killing algebra has the structure equations (3.15), with 
c = d = 0 in Section 1. In general, c.h. spaces are not locally homogeneous, or even do 
not have a homogeneous model [ 121. 

In order to prove the next claim, we need a technical result. 

Lemma 4.1. Assume (E,) is an orthoframe field in a pseudo-Riemannian manifold (M, g) 
with 6“ = g(E,, E,). Let 11 11; be the “square” of the induced pseudo-Riemannian metric 
on the algebra of covariant tensor fields of M and let t be covariant tensor fields on M. Then 

II t II:= Cc’ II intEnt II: 
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PruoJ Use the identity t = C 13’ @ ints, t and the fact that on a decomposable tensor field, 
11 11: acts multiplicatively, i.e. 11 s 63 u II;=11 s 11~11 u II:. 0 

Proposition 4.2. The spaces (M, g) given by (4.11) are not locally homogeneous if c is 
not a null vector and 11 AC \I: does not vanish. 

Proof The covariant differential of the Ricci tensor of a locally homogeneous Lorentz 
manifold has constant induced “square” norm. 

A direct computation shows that, in terms of the section 0 defined in (4.3) the Ricci 
tensor field is 

p =I1 c 11; 0’ 8 0’ + ;c,c&P @ (9 + Ob @ 0”). 

If E = (Ei) is the orthoframe field dual to 0, then from (4.5) we get 

(4.12) 

a.f VxEl = pf-‘O’(X)E,, 
axfl 

VxE, = f-1A;6’1(X)Eb - +~J-‘H~(X)EI. 

and therefore 

V,e” = -&-f-‘H’(X)H’ - f-1A$91(X)8C, 

vxe’ = $f-lH’(x)& 
(4.13) 

We take then covariant derivative of (4.12) w.r.t. X and from (4.13) and due to (4.11) we 

get 

V,,O=@‘(X)((- 11 c Il$‘b@’ @@+eb@@‘)) 

- 2c,cbf-‘A~(# @ @ + ea @ @)). 

In particular, the covariant derivatives of the Ricci tensor w.r.t. 0 are 

VE, p = - 11 c 11: cb@ ‘8 0’ + ob ‘8 0’) 

- 2c&f-‘A;(& @ Ba + @a + f? @ &) 

and 

(4.14) 

(4.15) 

V&P = -2c,c&&6’d @ @ + @ @ ed). (4.16) 

Since intEa Vp = VE, p, in view of Lemma 4.1 it follows that the “square” norm of the 
covariant differential of the Ricci tensor is 

II VP 112=11 V&P II2 +-p II V&P II2 . (4.17) 

From (4.15) and (4.16) we get 

11 VE,/-’ 112= 4 11 c 11: (11 c 11: +2f-2 11 Ac 11:) 



242 I! Putrungenaru/Jourtlul qf Geometv and Physics 26 (1998) 227-246 

and 

11 VE,b’ iI*= W* 11 c 11:11 AC 11: 

Thus the “square norm” of the covariant differential of the Ricci tensor is 

]I VP t12= 4 II c IIf (II c IIf +4f-2 ]I AC II;). (4.18) 

Note that the right-hand side of (4.18) depends on the nonconstant function f and therefore 
]] Vp II is constant only if II c 11~11 AC IIT vanishes, proving the claim. 0 

We recall that a necessary condition in one of Hawking singularity theorems is time-like 
convergence condition, i.e. Ric(v, v) 1 0 for any time-like vector v. 

Proposition 4.3. If c is a space-like vector, then the space (M, g) given by (4.11) satisfies 
the time convergence condition. 

The proof is straightforward from the definition and (4.12). 
A similar class of examples of c.h. Lorentz manifolds sources from an analogous con- 

struction, if we start instead with a skew symmetric matrix B E o(3), and with a perturbation 
of the flat left invariant Lorentz metric on the group of motions M in the 3-Euclidean space, 
which are generated by translations and the l-parameter group generated by B. In this case 
the coordinates are P, a = 1, 2, 3, for the translation in the direction of P-coordinate axis 
and t for the 1 -parameter group of isometires generated by B. The left invariant forms on 
M are 

@’ = dx” + B$-‘dt, “= dt (4.19) 

and if @ = (@), then the flat left invariant Lorentz metric is go =I] e I]: and the perturbed 
metric is g = ]I 0 ]I:, where the components of 0 are 

8” =e”, Q4= fe” (4.20) 

and 

.f(x, t) = g(t) exp(cbx9. (4.21) 

(M, g) has the curvature forms: 

sz; = 0, f2,4 = C&O4 A oh. (4.22) 

Remark 4.1. Note that the idea of perturbing a metric with additional properties, to obtain 
exact solutions of Einstein equations goes back to the Kerr-Schild solution, obtained by a 
perturbation from a flat metric and has been also used in a slightly more general setup in 
[21,23]. Interesting enough, if a metric (4.3) is R.c.h., then it is also c.h.; therefore examples 
of R.c.h.‘s other than Einstein or c.h. in dimension 4 are still to be found. 
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Some of the early relativistic cosmological models like those due to Einstein, de Sitter, 
Gijdel and others [lo], being static had to be replaced by Robertson-Walker universes, or 
more general by space-like homogeneous Lorentz manifolds. 

The main evidence of expansion of the Universe are the cosmological redshifts [lo]. We 
will prove that such redshifts are predictable for a class of c.h. Lorentz manifolds with a 
metric (4.23). 

Let us consider the metric gL..h =]] 8 ]I:, where 

0” = dx“ + h”(t) dt, Q4 = exp(c&) dt . (4.23) 

Theorem 4.1. Assume h is an arbitrary d@erentiable function and II c Il# 0. Then a 
gravitational$eld modeled on a metric gr,l, has both light-like geodesics presenting both 
cosmological blueshifts and redshifts. Such a geodesic has a singularity, if it presents a 
blueshift, and lasts indejinitely in future ifit presents a redshijt. 

Prooj: We will assume that s is an affine parameter along the light-like geodesic v, and let 
p be the derivative w.r.t. s. We put 6 = 0 (p), so that the energy of a photon emitted along 
y when measured w.r.t. 0 is Q4 and the momentum is (&). We have (6)* = C(8”)2, 
and therefore 

&~4y = c A&c-~~~~ (4.24) 

The Lagrangian is L(y. p) = ~(&I’)* - (CG4)2, where 

8” = .I?’ + hO(t O4 = exp(c&)i. 

The Euler-Lagrange equation for the ath component of y is 

z$CP = -2d4c, exp(chx’)i. (4.25) 

Multiply this equation by &’ and sum up for a =l-3; it follows that 

$ (II &pace 112) = -2G4 C c,O” exp(c&)i = -2 CC~@” exp(2c&)i2. 
a a 

Therefore 

Then multiply (4.24) by c, and sum up for a = 1-3; it follows that 

$ (Cc*@) = - ]I c ]I2 exp(2c&)i2 = - ]] c ]I2 (64)2. 

Let u = (C, c,@), u = (c$~)~, cx =]I c I]. We obtained the o.d.e.: 

d 
-u = -&I, 

d 

ds 
--u = -2uv, 
ds 
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and are led to consider the following o.d.e.: 

Set v = expz, then 

Z = -2~~ exp 2 

and if we set i = p(z), then 

p’p = -2a2 expz, 

which implies 

22 = p2 = 4a2(exp c - exp z) 

so that 2 = f2a(exp c - exp z)‘/*, where c is a constant. 
Assume z = 2aw, and let k = exp c - exp 2a, then ti = f(k - exp w) 1/2, where k is a 

positive constant. 
Case I. ti = -(k - exp w)t/*. w decreases and so does exp w, and therefore k - exp w 

increases and remains negative. Assume SO < s and W = W(s), IV0 = exp SO. Then 

WI, 

s-so= 
s 

(k - exp w)t’* dw 

W 

and 

Wll 

lim 
W+-00 s 

(k - expw)t12dw = 00 

W 

showing that the light-like geodesic extends indefinitely in the future. 
Case 2. ti = (k - expw)1/2. w increases, k - exp w decreases. Question is how long 

will it take to w, to reach the value In k. Let so < s and W = W(s), WO = expso. One has 
to find the limit 

W 

Sk = So + lim s (k - exp w) t/2 dw. 
W+ln k 

Wo 

This integral is convergent and therefore in Case 2, the light-like geodesic has a singularity 
in the future. 

From (4.23) the physical interpretation of this behavior of light-like signals is that they 
are either inextensible, or else E(y (s)) = (G4)* d ecreases. This energy E(y(s)) is h/h(s), 
where h is Planck’s constant and h(s) is the wavelength of our “photon”. measured in the 
coframe 0. As such, in the second case, h is increasing in time along the geodesic, and 
the photon has a positive redshift. In the first case, one should expect blueshift of light, 
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and since the geodesic is inextendible, the physical interpretation is that blueshift signals a 
singularity. 0 

Corollary 4.1. Assume (M, g) is a c.h. Universe given by (4.19), with ]] c lI# 0 and B = 0. 
The wavelength of any light-like particle which lives indefinitely in the future presents a 
redshift. 

Proposition 4.4. The metrics in Theorem 4.1 satisfy the time divergence condition, i.e. for 
any time-like vector v, Ric(v, v) 5 0. 

Proo$ A straightforward computation following from (4.22) shows that the Ricci tensor 
field is 

Ric = - 11 c II* 614 @ o4 + $c,q,(Q” @ &’ + Gb @3 0”). 

Thus if u = u”E; is a time-like vector, 

RIc(v, v) = (vspace, cj2 - (v4)* II c 112~11 vspace II211 c II* 4~~)~ II c II* 
= g(v, v> II c II21 0. 0 

Remark 4.2. From Proposition 4.3 it follows that the metrics in Theorem 4.1 are typical 
“antimatter” gravitational fields, since the gravity in these space-times is repelling. 

Thus the singularity theorems related to these metrics is not a formal consequence of 
Hawking’s theorem. 

We finally note that existence of singularities leads us to the following question: Find 
sufficient conditions, under which a space-time (4.1 I), (4.20) or more generally a space- 
time of constant energy-momentum tensor is globally hyperbolic, or satisfies the generic 
condition [l,lO]. 
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